Studies on the Phytochemical Compounds in the Ethanolic Leaf Extract (ELE), Ethanolic Bark Extract (EBE) and Ethanolic Root Extract (ERE) of *Bridelia ferruginea* Benth (Euphorbiaceae)

Abdullahi Attah Alfa¹*, Orukotan Abimbola Ayodeji², Goji Anthony Donatus Teru³ and Kokori Bajeh Tijani⁴

¹Department of Anatomy, Faculty of Basic Medical Sciences, Kogi State University, Anyigba, Nigeria.
²Department of Microbiology, Faculty of Sciences, Kaduna State University, Kaduna, Nigeria.
³Department of Human Physiology, Faculty of Basic Medical Sciences, Kaduna State University, Kaduna, Nigeria.
⁴Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Kogi State University, Anyigba, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author AAA designed the study, wrote the protocol and wrote the first draft of the manuscript. Authors OAA and GADT managed the analyses of the study. Author KBT managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJBGM/2019/v2i430070

Editor(s):
(1) Dr. Gul Ozcan, Professor, Department of Biology, Faculty of Science, University of Istanbul, Turkey.

Reviewers:
(1) Maria Bintang, IPB University (Bogor Agricultural University), Indonesia.
(2) Pascaline Kindji Kpoyi zou, University of Lomé, Togo.
(3) Saravanan Subramaniam, Versiti-Blood Research Institute, USA.

Complete Peer review History: http://www.sdiarticle4.com/review-history/52520

Original Research Article

Received 10 September 2019
Accepted 14 November 2019
Published 19 November 2019

ABSTRACT

The phytochemical compounds of *Bridelia ferruginea* plant parts was carried out using qualitative method to determine the bioactive compounds present in the plant leave, stem bark and root extracts. The samples was weighed, of which 100 g each of the powder were extracted in solvents (ethanol) 1000 ml macerated and stand for 72 hours. The solvents contained in the maceration

*Corresponding author: E-mail: attahalfa@gmail.com;
bottle was decanted and filtered using a filter paper, the filtration was aided using a suction pump. The filtrate was concentrated using a rotary evaporator and then transferred into thermostatic water cabinet (Temperature was set at 45°C), allowed to dry completely. The plant parts extracts were separately kept in a screw capped bottle for further research. The bioactive compound in the plant parts were detected. The result revealed that Carbohydrates, Saponins, Flavonoids, Tannins, Cardiac Glycosides, fats and oils were present. Alkaloid present in Drangedoff’s test in all plant parts extract but absent in Mayer’s test in only leaf extract. Terpenoids/Steroioids present in Liebermann-Burchard’s test in all plant parts extract but absent in Salkowski’s test in only leaf extract. Anthraquinones were absent in all plant parts extracts using Bontrager’s test. Therefore, the presence of these phyto-pharmacological compounds is an indicative that the plant is medicinal and it can be used for the treatment of bacterial and other microbial infections. Further study can be done to separate the individual metabolites to test their antimicrobial activity against some pathogenic bacteria like bacterial meningitis, tuberculosis and syphilis to determine their potency.

Keywords: Bridelia ferruginea; ethanolic extracts; medicinal plants; phyto-pharmacological compound; qualitative.

1. INTRODUCTION

Bridelia ferruginea is a common savannah, deciduous tree of genus Bridelia. It is usually a gnarled shrub which sometimes reaches the sizes of tree in suitable condition. Bridelia ferruginea Benth (Guinea Fula-Pulaar) in English and their local common names are kizni, kiri (Hausa), Mirehi (Fulani), Iroladan or “Epo Ira” (Yoruba), Ola (Igbo), Awuya (Ebira), [1]. Its habitat is the savannah, especially in the moister region extending from Guinea to Zaire and Angola. Bridelia ferruginea grows up to 3-4 m high and may be 27.5 cm in width [2,3]. The stem is often crooked with branches occurring at the lower regions. The bark is gray, rough and often scaly [4]. The plant of ten bears spines and may be crimson coloured. The leaves may be small to medium sized, Bridelia species belong to the

family Euphorbiaceae and comprise approximately 60-70 species found in Asia, Africa and Australia [4,2,5]. Bridelia ferruginea is utilized in traditional African Medicine in treating disease conditions such as arthritis, bruises, boils, dislocation, burns, fever, headaches, stiffness, rheumatic pains and oedema [6]. Other uses include intestinal disorders, diabetes, thrush, epilepsy, cough, gonorrhea, infectious diseases including sexually transmitted diseases, skin diseases and eruption, skin cancers, roundworm [7]. It is also an antidote for arrow poison [5] and used as anti-inflammatory [8] and antitumor agent [4].

Reports on the plant have shown that aqueous leaf and root extracts of the plant possesses hypoglycemic activities. Ethno pharmacological reports have shown that the stem bark extract
possesses antiulcerative properties [3] and anti-inflammatory and antibacterial properties [8]. Research further indicates that extract of the stem bark possesses antioxidant properties [9], antipyretic and analgesic activities [10]. The aqueous stem bark extract possesses antihypertensive, diuretic and sedative actions [11,12]. The stem bark extracts possess antioxidative and neuroprotective activities [13]. Furthermore, studies have shown that the aqueous extract of *B. ferruginea* stem bark reduces vascular permeability in both cyclophosphamide-induced hemorrhagic cystitis and acetic acid induced vascular permeability in rats and mice [8]. *B. ferruginea* have shown that the stem bark extracts exhibit anti-inflammatory properties, which were attributed to the suppression of up-regulation of tumour necrosis factor alpha (TNFα) [8]. *B. ferruginea* stem bark extract inhibits xanthine oxidase and possesses superoxide scavenging activity due to the presence of 3-O-methylquercetin, myricetin, ferrugin and quercetin 3-O-glucoside [7]. The stem bark and leaf extracts have contractile effects on the smooth muscle of the bladder [14]. The extracts of *B. ferruginea* possess anti-thrombotic effects. Chemical and pharmacological studies of *Bridelia* species have shown the presence of flavonoids, sesquiterpenes, triterpenoids, and phenolic compounds [5]. *Bridelia* species possess variety of biological activities including antiamebic, antianemic, antibacterial, anticonvulsant, anti-diabetic, antimarial, antidiarrhoeal, antihelmintic, anti-inflammatory, antineuro-inflamatory, antimalarial, antinociceptive, antiviral, and hypoglycemic [5].
Traditional medicine constitutes an important source of drugs for ethno pharmacological relevance and investigation. Various medicinal food-plants and animal products-supplements are available for use in certain immune deficiency disease conditions related to malnutrition such as infectious disease and hemorrhagic sepsis [15].

2. METHODOLOGY

2.1 Collection and Identification

The fresh leave, bark and root samples of *Bridelia ferruginea* were collected at Baba Wali Street, NTA Community, Behind Kogi State University, Anyigba, Kogi State, Nigeria, April, 2019. The plant parts were identified and authenticated by U.S Gallah at the Department of Biological Sciences (Botany option), Kaduna State University. A voucher samples of the plant deposited in the herbarium unit and the voucher number KASU/BS/1323 was deposited in the herbarium.

2.2 Processing of the Plant Samples

The plant parts were washed thoroughly with distilled water, shade dried for 3-4 weeks at room temperature in the Histology laboratory of the Anatomy Department, Kogi State University, Anyigba. The plant parts were pulverized in a mortar and pestle and was grounded into fine powder of 40 mm mesh size. The samples were stored in an air-tight container for further use. The samples was weighed, of which 100 g each of the powder were extracted in solvents (ethanol) 1000 ml macerated and stand for 72 hours. The solvents contained in the maceration bottle was decanted and filtered using a filter paper, the filtration was aided using a suction pump. The filtrate was concentrated using a rotary evaporator and then transferred into thermostatic water cabinet (temperature was set at 45°C), allowed to dry completely. The extracts obtained was scrapped using a clean spatula and grounded using small laboratory mortar and pestle, the extracts were weighed using weighing balance.

The percentage yield were calculated as follows:

\[
\text{% Yield} = \left(\frac{\text{Weight of extract}}{\text{Weight of plant material}} \right) \times 100
\]

The extract was stored air-tight in a refrigerator prior to use.

2.3 Determination of Phytochemical Compounds in *Bridelia ferruginea* Parts Extracts

The methods of [16,17] were used, the phytochemical compound was carried out in the Ethanolic Leaf Extract (ELE), Ethanolic Bark Extract (EBE) and Ethanolic Root Extract (ERE) of *B. ferruginea* according to standard procedures as follows:

2.4 Test for Carbohydrate

2.4.1 Molisch’s test

0.5g of the ELE, EBE AND ERE in a test tube, 3 drops of molisch’s reagent was added followed by concentrated sulfuric acid. The formation of a reddish colored ring at the interface indicates the presence of carbohydrates [16,17].

2.4.2 Test for Saponins

Frothing test: About 10ml of distilled water was added to (0.5 g) of the leave, bark and root extract and was shaken vigorously for 30 seconds. The solution was allowed to stand for 5 minutes, the formation of a persistent froth indicates the presence of saponins [16,17].

2.4.3 Test for flavonoids

Shinoda test: The extracts (0.5 g) was dissolved in 2 ml of methanol and pieces of metallic magnesium chips were added followed by few drops of concentrated hydrochloric acid, the formation of a pink, orange or red to purple coloration indicates the presence of flavonoids [16,17].

Sodium hydroxide test: Two drops of 10% Sodium hydroxide was added to the solution of the extracts (0.5 g), yellow coloration indicates the presence of flavonoids [16,17].

Ferric chloride test: An amount of 2 to 3 drops of ferric chloride solution were added to the solution of the extracts (0.5 g). Green-blue colour was observed [16,17].

2.4.4 Test for tannins

Lead sub-acetate test: 0.5 g of the extracts, 4 drops of lead sub-acetate solution was added, the formation of a cream coloured precipitate indicates the presence of tannins [16,17].
2.4.5 Test for terpenoids/steroids

Salkowski’s test: 0.5 g of the extracts was dissolved in 2 ml of chloroform, 3 drops of concentrated sulphuric acid was added at the side of the test tube. A red brown coloration at the interface indicates the presence of terpenoids.

Liebermann-Burchard’s test: 0.5 g of the extracts equal volume of acetic anhydride was added and mixed gently. 1 ml of concentrated sulphuric acid was added down the test tube. This was observed for instant colour changes and over a period of one hour. Blue to blue-green colour in the upper layer and reddish, pink or purple colour at the junction of the two layers indicates the presence of triterpene [16,17].

2.4.6 Test for alkaloids

Dragendoff’s test: The extracts (0.5 g) was dissolved in 2 ml of 5% H2SO4 in 50% ethanol with continuous stirring in water bath. The mixture was filtered and few drops of Dragendoff’s reagent was added, rose red precipitate indicates the presence of alkaloids [16,17].

Mayer’s test: To 2 ml acidic solution of the extracts (0.5 g) in a test tube, few drops of Mayer’s reagent were added, a cream precipitate indicate the presence of alkaloids [16,17].

2.4.7 Test of anthraquinones

Bontrager’s test: 0.5 g of the extract was dissolved in 5ml chloroform, shaken and filtered. To the filtrate, an equal volume of 10% ammonium solution was added with continuous shaking, bright pink colour in the aqueous upper layer indicates the presence of anthraquinones [16,17].

2.4.8 Test for cardiac glycosides

Keller-Kiliani test: 0.5 g of the extracts was dissolved in 1ml glacial acetic acid containing traces of ferric chloride solution. The solution was then transferred into a dry test tube to which an equal volume of sulphuric acid was added, a brown ring obtained at the interface will indicate the presence of deoxy sugar [16,17].

Test for fats and oils: Filter paper soaked in the extracts (0.5 g) solution or impregnated with extracts was allowed to dry and checked for translucence film, which indicates the presence of fats and oils.

3. RESULTS

The results obtained during the course of this experiment/projects are presented below.

3.1 Percentage Yield of Ethanolic Leave Extract, Ethanolic Bark Extract and Ethanolic Root Extract of *Bridelia ferruginea*

The percentage yield of the extracts (plant parts of *Bridelia ferruginea*) samples is calculated below:

\[
\text{% yield} = \frac{\text{Weight of extracts}}{\text{Weight of plant}} \times 100\%
\]

Weight of ELE = 24.91 g, EBE = 24.25 and ERE = 16.37.

Weight of plant = 100 g.

Therefore, % yield = \((24.91 \times 100\%) / 100\) g, \((24.25 \times 100\%) / 100\) g and \((16.37 \times 100\%) / 100\) g

= 24.91%, 24.25% and 16.37%.

The percentage yield of the extracts obtained is calculated above.

3.2 The Results of Phytochemical Compounds

The Table 3 is a summary of the phytochemical compounds or secondary metabolites of the Ethanolic Leaf Extract (ELE), Ethanolic Bark Extract (EBE) and Ethanolic Root Extract (ERE) of *B. ferruginea* which revealed that Carbohydrates, Saponins, Flavonoids, Tannins, Cardiac Glycosides, fats and oils were present. Alkaloid present in Dragendoff’s test in all plant parts extract but absent in Mayer’s test in only leaf extract. Terpenoids/Steroids present in...
Liebermann-Burchard’s test in all plant parts extract but absent in Salkowski’s test in only leaf extract. Anthraquinones were absent in all plant parts extracts using Bontrager’s test. Temitayo et al., [20] also carried out the same research and detected the presence of alkaloids, tannins, flavonoid, cardiac glycosides, saponins and using ethanol. This result indicates that the parts of the plants have active ingredients responsible for the antimicrobial activity. The presence of these secondary compounds makes the plants fits or good for the treatment of bacterial and other microbial infections because most therapeutic effects of medicinal plants are traced to the plant constituents and the medicinal actions of these plant parts extract are unique to particular species or family [21]. This plant may have high antimicrobial activity due to the presence of these metabolites. Further study can be done to separate the individual metabolites to test their antimicrobial activity against some pathogenic bacteria like bacterial meningitis, tuberculosis and syphilis to determine their potency.

Table 1. Biologic activity of main groups of natural compounds

<table>
<thead>
<tr>
<th>Compound type</th>
<th>Pharmacological properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terpenoid/steroid</td>
<td>Antimicrobial, antiviral, anthelmintic, antibacterial, anticancer, antimalarial, anti-inflammatory, antineuroinflammatory [14].</td>
</tr>
<tr>
<td>Phenolics acids</td>
<td>Anticarcinogenic and antimutagenic, anti-inflammation and anti-allergic [8].</td>
</tr>
<tr>
<td>Saponins</td>
<td>Antitumor, antiviral, antifungal, anti-inflammatory, immunostimulant, antihypoglycemic, antihypertotoxic and hepatoprotective, anticoagulant, neuroprotective, antioxidant [18].</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Antioxidant activity, cardiovascular protective, anti-inflammatory, hepatoprotective, antiviral, antibacterial [5].</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>Antispasmodic, antimalarial, analgesic, diuretic activities, local anesthetic, antihypertensive, antiasthma, antimalarials, diuretic, bactericidal [5].</td>
</tr>
<tr>
<td>Tannins</td>
<td>Antioxidant, anti-carcinogenic, diuretics, hemostatic, anti-mutagenic, metal ion-chelators, antiseptic [19].</td>
</tr>
</tbody>
</table>

Table 2. Percentage yield of the plant parts of Bridelia ferruginea samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>Weight of plant parts (g)</th>
<th>% Yield extract (g)</th>
<th>Observed coloration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leave extract</td>
<td>100</td>
<td>24.91</td>
<td>Light green</td>
</tr>
<tr>
<td>Stem bark extract</td>
<td>100</td>
<td>24.25</td>
<td>Reddish</td>
</tr>
<tr>
<td>Root extract</td>
<td>100</td>
<td>16.37</td>
<td>Brownish</td>
</tr>
</tbody>
</table>

Table 3. Phytochemical compounds of ELE, EBE and ERE of Bridelia ferruginea parts

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Test</th>
<th>Interference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ELE</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>Molisch’s test</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>Frothing’s test</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Shinoda’s test</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Sodium Hydroxide’s test</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Ferric Chloride’s test</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>Lead Sub-acetate’s test</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids/Steroids</td>
<td>Salkowski’s test</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Liebermann-Burchard’s test</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>Dragendoff’s test</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Mayer’s test</td>
<td>-</td>
</tr>
<tr>
<td>Anthraquinones</td>
<td>Bontrager’s test</td>
<td>-</td>
</tr>
<tr>
<td>Cardiac Glycosides</td>
<td>Keller-kilian’s test</td>
<td>+</td>
</tr>
<tr>
<td>Fats and Oils</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Key: + = Present; - = Absent
5. CONCLUSION AND RECOMMENDATION

The phytochemical composition of the leaf, stem bark and root extracts of the Bridelia ferruginea indicate the presence of eight active constituents. The presence of these phyto-pharmacological compounds is an indicative that the plant has antibacterial property and it can be used for the treatment of bacterial and other microbial infections. Further investigation, purification and determination of these promising constituents can be done to assay their antimicrobial activity as alternative medicine.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

13. Article no.INDJ.51609, ISSN: 2321-7235, NLM ID: 101632319.
Article ID 5601327.

Available: www.phytopharmajournal.com

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/52520