Analgesic Properties of Aqueous Leaf Extract of *Alchornea cordifolia* (Christmas Bush) on Wistar Rats

E. Harrison Ogheneochuko a, Dikoye Peters a, C. Awarajih Uwaezuoke a and Ukoro Blessing b*

a Department of Biochemistry, Faculty of Sciences University of Port Harcourt, Port Harcourt, Choba, Rivers State, Nigeria.

b Department of Human Physiology, College of Health Sciences University of Port Harcourt, Port Harcourt, Choba, Rivers State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJBGMB/2022/v10i230239

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/82721

Original Research Article

ABSTRACT

Disease conditions leading to pain are major healthcare problem worldwide. Incidences of pain related disorders have been on the increase worldwide. Although, several synthetic agents are available in treatment of these disorders, long-term usage has been reported to potentially lead to undesired effect. Hence Analgesic effects of aqueous leaf extract of *Alchornea cordifolia* on wistar rats were investigated. Twenty wistar rats of both genders weighing between 110-178 g were utilized. Acetic acid was used for induction of pain. The rats were grouped into five groups of 4 per group in each study. Groups 3, 4 and 5 received 400, 800 mg/kg b.w of aqueous extract and reference drug respectively after induction. Groups 1 and 2 served as normal and negative controls. Rats were sacrificed and blood samples collected for hematological and biochemical analyses. Phytochemical screening of the plant revealed the presence of alkaloid, phenolic compounds, Tannins and Quinine. The result showed significant increase (p≤ 0.05) in paw size, and number of writhing in group 2 and non-significant reduction (p ≥ 0.05) in group 4 were seen when contrasted to group 1 and 2 respectively. Highest pain inhibition (16%) was seen in group 4. Significant (p≤0.05) increase in C-reactive protein and nitric oxide concentrations were observed in groups 3 and 4 when...
contrasted to group 2 in the study. Non-significant differences in all hematological parameters in all treated groups were observed when compared to group 2. Aqueous leaf extract of *Alchornea cordifolia* displayed an analgesic effect.

Keywords: Anagelsic; *Alchornea cordifolia*; pains; medicinal plants.

1. INTRODUCTION

Disease conditions leading to pain are major healthcare problem worldwide. Incidences of pain-related issues have been on the increase worldwide. Although, several synthetic agents are available in treatment of these disorders, long-term usage has been reported by Qandil to potentially lead to the undesired effect. Plants have a reputation as remedies in ethnomedicine for the management of pain [1]. Extracts from plant reportedly possess vast secondary metabolites with myriad biological activities [2]. Plants are an interesting focal point for novel analgesic compounds. This necessitates the need for this study which was designed to evaluate the analgesic properties of aqueous leaf extract of *Alchornea cordifolia* on wistar rats. Synthetic analgesics drugs usage have been gaining popularity in the last few decades due to the physical, mental and exhaustive nature of work and occupation of many people especially in impoverished countries. Studies have established that prolonged usage of over the counter and prescription analgesic medication are linked to side effects which ranges from mild (such as irritation and nausea) to severe (such as Renal Failure, Respiratory Distress, Hepatotoxicity, Gastric and Duodenal ulcers, addiction amongst others) adverse effect [3]. Some of these effects may be temporal or permanent. Therefore, finding un-toxic and efficient drug to lower or manage pain remains a burden. Few years past, phytochemicals were the main source for evaluating analgesic properties of plants, some (phytoconstituents) of which are currently looked at as components (bioactive) for analgesic, actions [4].

There are different disease conditions which are associated with acute or chronic pains, such conditions has been reported by several researchers [5-116].

Alchornea cordifolia commonly known as Christmas bush is a vertical shrub or a perennial small tree with a lightly granulated bark, greyish and woody stem and a simple, alternate heart shaped based leaves [117]. Reported as an evergreen small tree from the *Euphobiaceae* family, Boniface et al. [118] opined that the plant parts are ethnobotanically used in management of myriad ailments.

Its medicinal properties have been reported by Boniface et al. [118] to include anti-diabetic, spasmylytic, anti-bacterial and anti-microbial. Over the years, more revelations on the medicinal potentials of *Alchornea cordifolia* including the Anti-*Helicobacter Pylori* induced-gastric ulcers [119]. Report by Agrawal et al. (2003) suggest that *Alchornea cordifolia* leaf alongside leaves from *Boerhavia Diffusa* plants possess Antifungal property although the level of this property is yet to be fully understood. The leaves, bark and roots have been reportedly used in ethnomedicine by the Urhobo people of Nigeria in curing conjunctivitis, amoebic dysenteries and venereal diseases [118]. Hence, given the myriad spectrum of ethnovotanical applications and reported multiple pharmacological properties attributed to *Alchornea cordifolia* as a medicinally important plant, this research was designed to further investigate the biological activities of this specie by evaluating analgesic properties of aqueous leaf extract on wistar rats.

2. MATERIALS AND METHODS

2.1 Study Design

The Wistar rats were purchased from the Department of Pharmacy, Faculty of Pharmaceutical Science, University of Port Harcourt, Rivers state, Nigeria. They were housed in different cages by groups with renewable bedding, and were fed with standard rat feed and clean water, allowing them to acclimatize for fourteen days under normal temperature, humidity and light-dark cycle. After acclimatization, the animals were weighed and divided into 5 groups for analgesic study.

Acetic acid induces an inflammatory response in the abdominal cavity, with subsequent activation of nociceptors [120]. When animals are intraperitoneally injected with acetic acid, a painful reaction and acute inflammation emerge in the peritoneal area.
Table 1. Experimental design for analgesic study

<table>
<thead>
<tr>
<th>Groups</th>
<th>Description</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Normal control</td>
<td>No induction</td>
</tr>
<tr>
<td>Group 2</td>
<td>Negative control</td>
<td>1% acetic acid</td>
</tr>
<tr>
<td>Group 3</td>
<td>Alchornea cordifolia aqueous extract</td>
<td>1% acetic acid + 400mg/kg</td>
</tr>
<tr>
<td>Group 4</td>
<td>Alchornea cordifolia aqueous extract</td>
<td>1% acetic acid + 800mg/kg</td>
</tr>
<tr>
<td>Group 5</td>
<td>Reference drug</td>
<td>1% acetic acid + 50mg Aspirin</td>
</tr>
</tbody>
</table>

2.2 Plant Collection and Identification

The fresh leaf of *Alchornea Cordifolia* was obtained from Ekrejeta in Abraka in Ethioi East Local Government area of Delta State, Nigeria. After collection, the plant was sent to the Department of Plant Science and Biotechnology, University of Port Harcourt, where it was identified with. The plant was sent to the university of Portharcourt herbarium where it was identify by Dr. Ekeke chimezie and deposit at the herbarium with herbarium number UPH/V/1436.

Fig. 1. Young *Alchornea cordifolia* plant in its natural habit

Source: (Researcher)

2.3 Extract Preparation

The leaves were properly washed in running tap H₂O and allowed to air dry, and blend into powder form. 25g of the powdered was macerated in 100 ml of deionized water for 24 hours under mechanical agitation at room temperature. The suspension was filtered using whatman filter paper and dried in a water-bath at approximately 55°C. Crude extract gotten was store at 4°C.

2.4 Qualitative Phytochemical Screening of *Alchornea cordifolia*

The extract of *Alchornea cordifolia* was qualitatively screened to find out the presence of secondary metabolites and then relate its activity. This shows the presence or absence of these metabolites.

Alkaloids

Mayer’s reagent was used, plant extract of *Alchornea cordifolia* (0.5 g) was added to 5 mls of dilute sulphoric acid (1%) on a steam bath, and then filtered. The filtrate was transferred into a test tube and a few drops of Mayer’s reagents were added, white creamy participate will appear which indicates alkaloids is present [121].

Saponins

Froth test was employed; 50 mg plant extract diluted with distilled water up to 20 ml. The mixture was vigorously shaken for 15 minutes; two cm layer of foam will indicate the presence of saponins contents in a graduated cylinder [122].

Test for Flavonoids

Alkaline reagent method was employed. Aqueous solution of plant extract was treated with ammonium hydroxide 10% solution. Yellow fluorescence will appear and later the yellow colouration will becolourless when there is addition of a few drop of dilute acid this indicates the presence of flavonoids content.

Tannins

Ferric chloride (FeCl₃) test was used, 0.5 grams of the extract was dissolved in 50 ml of distilled water and sieved through a muslin filter. Then, a small amount of filtrate was transferred to a test tube and a few drops of 5% ferric chloride solution were added to form blue-black precipitation. This indicates the presence of tannins [123].

Terpenoids

Salkowski’s test was employed; little quantity of extract was mixed with 2 ml of chloroform and sieved through a filter paper. Three drops of concentrated H₂SO₄ were cautiously added into
the filtrate. The presence of terpenes was indicated by a reddish brown coloration of the interface was formed to show positive results for the presence of terpenoids [124].

2.5 Haematological Analysis

Total WBC count

Method: Improved Neubauer ruled chamber

Principle: Whole blood is diluted 1 in 20 in an acid reagent which haemolyses the red cells leaving the white cells to be counted.

Reagents

i. Turk’s solution.

Procedure: White blood cell count was done manually with the use of counting chambers. 0.38 ml of Turk’s solution was aliquoted into a plain bottle, 20 ul of whole blood collected with an EDTA bottle, was pipetted to each bottles, it was mixed gently for sedimenting. The counting chamber was covered with a cover slide and the edges sealed of distilled water. The solution in the plain bottle was then charged into the counting chamber at an angle of 45°, it was mounted on the microscope and focused using X40 magnification, the cells were accurately counted and the value was then multiplied by 50 and divided by 1000 to get the actual white blood cell count. This was done for all the samples.

White blood cell differential count

Method: Leishman stain [125]

Principle: Methanolic mixture-based of Methylene blue and eosin. The methanolic stock solution is undisturbed serving the intention of directly fixing the smear thereby eliminating a prefixing step.

2.6 Data Analysis

Laboratory data were analyzed with statistical packages for Social sciences (SPSS version 20). Values were reported as mean plus-minus standard error of mean employing analysis of variance (ANOVA) and least significant difference (LSD) for multiple comparison.

3. RESULT AND DISCUSSION

Table 2. Phytochemical Analysis of Alchornea cordifolia

<table>
<thead>
<tr>
<th>Alkaloid</th>
<th>positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolic_compound</td>
<td>positive</td>
</tr>
<tr>
<td>Tannins</td>
<td>positive</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>negative</td>
</tr>
<tr>
<td>Saponnin</td>
<td>positive</td>
</tr>
<tr>
<td>Quinine</td>
<td>Positive</td>
</tr>
<tr>
<td>Coumarin</td>
<td>negative</td>
</tr>
<tr>
<td>Protein</td>
<td>negative</td>
</tr>
<tr>
<td>Cardiac glycoside</td>
<td>negative</td>
</tr>
<tr>
<td>Steroid</td>
<td>negative</td>
</tr>
</tbody>
</table>

Table 3. Effect of oral administration of aqueous leave extract of Alchornea cordifolia on acetic acid induced writhing in wistar rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Average number of Writhing</th>
<th>Percentage Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control (0.5 ml distilled water)</td>
<td>0.00±0.00³</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Control (-ve) 1% acetic acid</td>
<td>4.50±1.55³</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1% acetic acid + 400 mg/kg Alchornea cordifolia</td>
<td>4.25±0.48</td>
<td>5.56</td>
</tr>
<tr>
<td>4</td>
<td>1% acetic acid + 800 mg/kg Alchornea cordifolia</td>
<td>3.75±0.48</td>
<td>16.67</td>
</tr>
<tr>
<td>5</td>
<td>1% acetic acid + 300 mg/kg Aspirin</td>
<td>4.25±0.48</td>
<td>5.56</td>
</tr>
</tbody>
</table>

Values are reported as mean ± standard error of mean (M±SEM) (n=4). Values with similar superscript letters indicate statistical significant differences (p<0.05) down the column while those without superscripts show non-significant differences (p≥ 0.05) down the column when compared with the control and between groups.
Table 4. Effect of aqueous leave extract of *Alchornea cordifolia* on interleukin-6, C-reactive protein and nitric oxide concentration of acetic acid induced-writhing in wistar rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Interleukin-6 (pg/ml)</th>
<th>C-reactive protein (mg/l)</th>
<th>Nitric Oxide (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control (0.5ml distilled water)</td>
<td>249.75±59.79</td>
<td>0.06±0.00</td>
<td>0.09±0.00</td>
</tr>
<tr>
<td>2</td>
<td>Control (-ve) 1% acetic acid</td>
<td>180.05±8.80<sup>a</sup></td>
<td>0.50±0.25</td>
<td>0.57±0.27</td>
</tr>
<tr>
<td>3</td>
<td>1% acetic acid + 400mg/kg Alchornea cordifolia</td>
<td>109.03±20.74</td>
<td>0.42±0.13</td>
<td>0.11±0.04<sup>a,b</sup></td>
</tr>
<tr>
<td>4</td>
<td>1% acetic acid + 800mg/kg Alchornea cordifolia</td>
<td>80.48±17.80<sup>a</sup></td>
<td>0.74±0.43</td>
<td>0.77±0.31<sup>a</sup></td>
</tr>
<tr>
<td>5</td>
<td>1% acetic acid + 300mg Aspirin</td>
<td>119.90±0.00</td>
<td>0.05±0.00</td>
<td>0.84±0.00<sup>b</sup></td>
</tr>
</tbody>
</table>

Values are reported as mean ± standard error of mean (M±SEM) (n =4). Values with similar superscript letters indicate statistical significant differences (p≤ 0.05) down the column while those without superscripts show non-significant differences (p≥ 0.05) down the column when compared with the control and between groups.

Table 5. Effect of aqueous leave extract of *Alchornea cordifolia* on some haematological parameters of acetic acid induced-writhing in wistar rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>ESR (mm/hour)</th>
<th>WBC (X 10<sup>9</sup>/L)</th>
<th>Neutrophils (%)</th>
<th>Lymphocytes (%)</th>
<th>Monocytes (%)</th>
<th>Eosinophils (%)</th>
<th>Basophils (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control (0.5ml distilled water)</td>
<td>0.00±0.00</td>
<td>9.00±0.24</td>
<td>40.00±1.22</td>
<td>48.50±0.61</td>
<td>5.00±0.41</td>
<td>1.50±0.20</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>2</td>
<td>Control (-ve) 1% acetic acid</td>
<td>11.50±1.43<sup>a</sup></td>
<td>13.15±0.27</td>
<td>39.00±0.41</td>
<td>40.00±2.04<sup>b</sup></td>
<td>16.50±3.06<sup>a</sup></td>
<td>4.50±0.61<sup>a</sup></td>
<td>0.00±0.00<sup>a</sup></td>
</tr>
<tr>
<td>3</td>
<td>1% acetic acid + 400mg/kg Alchornea cordifolia</td>
<td>30.00±11.02<sup>a,b</sup></td>
<td>21.60±7.60</td>
<td>32.75±2.17<sup>a</sup></td>
<td>51.50±2.40<sup>a,b</sup></td>
<td>12.25±2.56<sup>a</sup></td>
<td>2.50±0.65<sup>a</sup></td>
<td>0.75±0.25<sup>a</sup></td>
</tr>
<tr>
<td>4</td>
<td>1% acetic acid + 800mg/kg Alchornea cordifolia</td>
<td>28.00±7.48<sup>b</sup></td>
<td>12.70±2.78</td>
<td>40.25±4.48</td>
<td>43.75±3.94</td>
<td>10.00±1.41<sup>a</sup></td>
<td>4.75±1.18<sup>a</sup></td>
<td>1.75±0.63<sup>a,b,c</sup></td>
</tr>
<tr>
<td>5</td>
<td>1% acetic acid + Aspirin</td>
<td>9.33±1.89<sup>b</sup></td>
<td>11.80±1.53</td>
<td>46.00±2.27<sup>a</sup></td>
<td>42.00±3.56<sup>b</sup></td>
<td>7.67±1.18<sup>a</sup></td>
<td>3.67±1.03<sup>a</sup></td>
<td>0.50±0.29<sup>c</sup></td>
</tr>
</tbody>
</table>

Values are reported as mean ± standard error of mean (M±SEM) (n =4). Values with similar superscript letters indicate statistical significant differences (p≤ 0.05) down the column while those without superscripts show non-significant differences (p≥ 0.05) down the column when compared with the control and between groups.
Table 3 showed a non-significant decrease (p ≥ 0.05) in the number of writhing in group 3, 4 and 5 when compared with group 2.

Table 3 also revealed a non-significant decrease (p ≥ 0.05) in the number of writhing in group 4 when compared with group 3, a non-significant decrease (p ≥ 0.05) in the number of writhing in group 4 when compared with group 5.

Table 3 further revealed greater percentage inhibition in group 4 when compared with groups 3 and 5.

Table 4 showed a significant decrease (p≤ 0.05) in interleukin concentration in group 4, a non-significant decrease (p ≥ 0.05) in group 3 and group 5 when compared with group 2. Also, a non-significant increase (p ≥ 0.05) in interleukin concentration in group 3 when compared with group 4, a non-significant decrease (p ≥ 0.05) in interleukin concentration in groups 3 and 4 when compared with group 5.

Table 4 also showed a non-significant decrease in C-reactive protein levels in group 3 and 5, non-significant increase (p≥ 0.05) in the C-reactive protein levels in group 4 when compared with group 2. Also, a non-significant increase (p≥ 0.05) in the C-reactive protein levels in groups 3 and 4 when compared with group 5.

Table 4 further revealed a non-significant decrease (p ≥ 0.05) in nitric oxide levels in group 3, non-significant increase (p ≥ 0.05) in nitric oxide levels in group 4 and 5 when compared with group 2. The Table also showed a significant decrease (p ≤ 0.05) in nitric oxide levels in group 3 when compared with group 4, a significant decrease (p ≤ 0.05) in the nitric acid levels in group 3 when compared with group 5.

4. DISCUSSION OF FINDINGS

Writhings generated by parenteral administration of acetic acid in rodents is due to profound pain of endogenous nature which recurs over a time period [126]. Investigation on the analgesic properties of *Alchornea cordifolia* (Tables 3-4) showed a non-significant decrease (p ≥ 0.05) in the number writhing in the 400 and 800mg/kg *Alchornea cordifolia* treated groups, implying ability of *Alchornea cordifolia* to have potential analgesic properties. This finding agrees with [127] who reported a significant analgesic effect with 400 and 800mg/kg of *Alchornea cordifolia* leaves extract. The analgesic effects of *Alchornea cordifolia* could be attributed to alkaloids and terpenes reportedly found in leaf.

Aspirin is an analgesic used in management of pain. The study found that *Alchornea cordifolia* extract at 800mg/kg treated group showed non-significant reduction (p ≥ 0.05) in writhing display compared with aspirin treated group, implying extract ability to block signals transmitted to brain and spinal cord in reaction to pain due to irritation, which causes release of mediators such as prostaglandins [126] thereby elevating to nociceptors sensitivity.

Furthermore, the analgesic investigations (Table 5) shows greater percentage inhibition at 800mg/kg against 400 mg/kg *Alchornea cordifolia* and aspirin treated groups, which is an indication of dose-dependent analgesic effect in conformity with [127] findings.

The study also observed decreased in interleukin-6, C-reactive protein and NO in the acetic acid-induced animals after dosing with *Alchornea cordifolia* aqueous leaf extract at 400 and 800 mg/kg b.w. The ESR, WBC, lymphocytes levels were significantly increased (p ≤ 0.05). However, neutrophils monocytes and eosinophils levels revealed non-significant decrease (p ≥0.05).

5. CONCLUSION

This research findings indicates that *Alchornea cordifolia* at 400 and 800 mg/kg showed potential analgesic properties.

ETHICAL APPROVAL

An approval for this study was obtained from the Centre for Research Ethics and Management of the University of Port Harcourt with approval.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

15. This is a brief review of the overlap between hypertension and type 2 diabetes that proposes there is a spectrum ranging from hypertension without dysglycemia to type 2 diabetes without elevated blood pressure.

33. Davy KP, Hall JE. Obesity and hypertension: Two epidemics or one? Am J Physiological Regulation Integrated Comp Physiology. 2004;286: R803–813. DOI: 10.1152

39. Giles TD, Materson BJ, Cohn JN, Kostis JB. Definition and classification of

44. He YH, Jiang GX, Yang Y. Obesity and its associations with hypertension and type 2 diabetes among Chinese adults age 40 years and over. Nutrition. 2009:25:1143–9. This was a cross-sectional study of over 5000 people in the community in Shanghai showing that obesity was associated with a higher risk of both hypertension and type 2 diabetes.

61. Kobayashi SD, Malachowa N, DeLeo FR influence of microbes on neutrophil life and death. Frontiers in Cellular and Infection Microbiology. 2017;7(159):159. DOI:10.3389/fcimb.2017.00159. PMC 5410578 PMID 28507953 Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.

64. Lambrecht BN, Hammad H. The immunology of asthma. Nature Immunology. 2015;16(1):45–56. DOI: 10.1038/ni.3049 PMID 25521684. S2CID 5451867

76. Ohno Y, Aoki N, Nishimura A. In vitro production of interleukins-1, interleukins -6 and tumour Necrosis factor-alpha in insulin

81. Orakzai RH, Orakzai SH, Nasir K, Santos RD, Rana JS, Pimentel I, Carvalho JA, MeneghelloR, Blumenthal RS. Association of white blood cell count with systolic blood pressure within the normotensive range, Journal of Human Hypertension. 2006;341-347. DOI: 10.1038/sj.jhh.1001992 PMID:16515108

84. Park YM, Bochner BS. Eosinophil survival and apoptosis in health and disease. Allergy, Asthma &Immunology Research. 2010;2(2):87–101. DOI: 10.4168/aair.2010.2.2.87 PMC 2846745 PMID 20358022

PMID 3228893

